Session: # **Curriculum Outcome Assesment using Subject Matter on the FE Examination.** Enno "Ed" Koehn, Ramakanth Mandalika Lamar University #### Abstract: In engineering education, assessment has become a major topic as a result of the adoption of EC 2000 by The Accreditation Board for Engineering and Technology (ABET). In particular, the utilization of a nationally-normed examination is one method recommended by the ABET criteria¹. In this regard, an effective and recognized tool for assessing engineering education is the Fundamentals of Engineering (FE) examination developed by the National Council of Examiners for Engineering and Surveying (NCEES). In this study, the findings of a detailed analysis of FE examination data of the students at Lamar University is conducted and presented in various forms. The investigation includes a discussion concerning the FE as an effective assessment tool and the development of a database of FE examination results. Fundamentals of Engineering examination data are presented in several forms to evaluate engineering student performance. First, a comparison of grades in individual subject areas (e.g chemistry, computers, dynamics, fluid mechanics, mathematics etc.) is conducted relative to the national average. This provides assessment information for a particular institution. Overall, the findings of the study indicate that the use of the subject matter on the FE exam to measure student performance yields considerable data for comparison purposes which may be utilized to asses and improve an engineering program. ## I. Introduction: Among the most significant obstacles facing universities, today, is related to developing quantitative measures for evaluating engineering student performance and tracking the effect of program changes in the curriculum. Gaining faculty acceptance for the evaluation methodology utilized is also important. Here, many of the difficulties result from a lack of available uniform performance measures, across institutions. Presently, the only available uniform performance measure taken by a large number of students from many institutions is the Fundamentals of Engineering (FE) examination. Unfortunately, many educators and university administrators are principally concerned with only the overall pass rate on the FE examination. Numerous institutions use this single number as a performance measure for engineering programs^{5,6,8}. For example the Texas Legislature has recommended that Texas Universities should be funded by a formula based, in part, on the student pass rate on the FE examination¹². ### II. FE exam as an assessment tool: The Fundamentals of Engineering examination is used, in part, as the first step in the professional licensing of engineers and was developed to measure minimum technical competence^{2,4,10}. It is a pass/fail exam that is taken by approximately 50,000 people a year, most of whom are recent college graduates or seniors within one year of graduation. Although the exam results do provide specific data on performance in a given subject, this information is not used for licensing. The data can, however, be utilized to make comparisons and conclusions, some of which may or may not be valid. Most importantly, the FE exam results also provide information concerning the achievement of students taking the test relative to state and national averages. In fact, the FE examination is the only nationally-normed exam that addresses specific engineering topics, which makes it an extremely attractive tool for use as part of an assessment process. Furthermore, the format of the FE exam was recently changed with the express purpose of making it more useful for outcomes assessment. Specifically, discipline specific sections for chemical, civil, electrical, industrial, and mechanical engineering were developed to include subjects from upper level courses --- topics that were not appropriate when students from all engineering disciplines took the same exam. This was done to better measure students knowledge of subjects taught in junior and senior level engineering courses. In addition to the above, the FE exam is currently under revision by the National Council of Examiners for Engineering and Surveying to increase its utility as a program evaluation tool. FE exam results may be used to assess the following subject areas as specified in the ABET criterion. - a) An ability to apply knowledge of mathematics, science and engineering. - b) An ability to design and conduct experiments, as well as to analyze and interpret data - c) An ability to design a system, component, or process to meet desired needs - d) An ability to identify, formulate and solve engineering problems - e) An understanding of professional and ethical responsibility - f) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. Some of the aforementioned subject areas may be covered in either or both the morning or afternoon sessions ## III. FE Pass Rate: Although the FE exam provides some means of assessment, there are both advantages and disadvantages of using the exam as an assessment tool; therefore, its widespread use as such should be viewed with caution. The FE exam should not be used to determine the curricular content of a program—its original purpose is to test, in part, competency for licensure. In addition, the exam is not intended to force programs to be similar. For licensure purposes, the total score is used rather than the score in any specific subset of questions. Passing the exam does not show the competence in all subjects but instead shows an average minimum level of competency in several subject areas. As mentioned, one of the major errors that could be made in using the FE exam as an assessment tool is focusing on the percentage who pass the exam⁹. This criterion is too broad to be effective in improving sub-discipline instruction. More specific measures are needed. Too often, the passing rates of individual programs are compared with those of other institutions, and these rates become more important than the subjects to be evaluated. In such a situation, the focus becomes "teaching to the exam" and not truly assessing the subject matter in the curriculum. In any case, institutions must remember that the original primary purpose of the FE is to assess minimal technical competencies of the various individuals sitting for the examination. # IV. FE Subject areas: A database of FE examination scores for Civil Engineering students at Lamar University has recently been developed. The data for the six years between 1998 and 2003 was extracted from the NCEES documentation³. With this information, the average scores of students from Lamar University can be compared with the national averages. Tables 1-4 show the grades for each subject (e.g Chemistry, Computers, Dynamics, Electrical Circuits, Fluid Mechanics, Ethics, Statics etc.) for both the morning and the afternoon general examination sessions. Comparing the data between Tables 1 & 2, and that of Tables 3 & 4, it can be seen that Lamar University results tend to be above the national average for many subject areas. For example, in the 2003 morning exam, shown in Tables 1&2, Lamar students performed above the national average in these subjects: Chemistry (82.0% / 63.5%), Electrical Circuits (50.0% / 39.5%), Ethics (86.7% / 68.5%), Fluid Mechanics (54.7% / 53.0%), Mathematics (76.3% / 64.0%) and Thermodynamics (48.3% / 44.5%). In order to reduce the volume of data and eliminate the importance of a single examination, three-year averages (2001 to 2003 and 1998 to 2000) were calculated. The results are illustrated in Tables 5-8. A comparison between Tables 5 & 6 indicates that the Lamar Civil Engineering scores tend to be generally higher than the national average for the morning examination. In fact, for the 2001-2003 time period, Lamar students earned lower scores in only three subject areas: Engineering Economy (62.2% / 64.7%), Material Science (48.8% / 53.5%) and Thermodynamics (43.1% / 47.0%). A comparison of the findings in Tables 7 & 8 for the afternoon general examination, however, show that the grades of Lamar students are generally lower than the national average for numerous subject areas. As an example, for the 2001-2003 time period Lamar students performed above the national average in only five of the twelve subjects under consideration. The ratio of the scores for the various subject areas, earned by students of Lamar University compared to the national scores, for both the morning and afternoon sessions was also calculated. Here, a ratio of greater than unity indicates that the Lamar scores exceed the national averages. This approach is recommended by the NCEES as a method to illustrate and compare the performance of the students in a specific department¹¹. For example, Table 9 illustrates that the Civil Engineering scores for 2001-2003 in Engineering Economy (0.96), Material Science/Structure of Matter (0.91) and Thermodynamics (0.92) were below the national average. Nevertheless, Table 10, the afternoon exam, shows for the three subjects under consideration that except for Material Science/Structure of Matter (0.90), Engineering Economy (1.06) and Thermodynamics (1.09) are above average. Table 11 illustrates the data for the six-year period between 1998 - 2003. The findings show that the ratio for all subjects is greater than unity for morning exam. This indicates that the Civil Engineering students have performed better than the national average for this test. However, in the afternoon, only four subjects are above the national values. These findings show that for many students the afternoon general exam is more difficult than the morning test. # V. Summary and Conclusions: One of the methods of assessment listed in the ABET criteria is student performance on nationally-normed examinations. The NCEES has developed, over the years, the FE
examination, which is designed, in part, to satisfy the professional licensing process. In addition, the FE examination, today, is the only nationally-normed exam that addresses specific engineering topics. This makes it an extremely attractive tool for use as part of the assessment process for an engineering institution. However, it must be noted that the FE test was originally designed to measure minimal technical competency. Lamar University has been utilizing the FE exam for numerous years. In fact, 524 students have sat for the examination since 1980. Data indicates that the pass rate of this group is 94.59%. From 1986 the pass rate of various disciplines was recorded by the College of Engineering. Since that time, 115 Civil Engineering students have taken the examination with an overall pass rate of 94.8%. This data must be transmitted, yearly, to the Texas State Legislative Board⁷. The NCEES recommends that the pass rate should not be utilized for assessment purposes. It is believed that a comparison of performance in individual subject areas yields more consistent results. Taking this concept under consideration, the department developed documentation that tabulates the Civil Engineering score in various subjects compared to the national scores in the identical subject areas. In addition, the ratios of the individual departmental scores to the national scores were calculated as shown in Tables 9-11. Utilizing this approach a ratio of equal to or greater than one indicates that the performance of Lamar students is equal to or exceeds the national average. The faculty of the Civil Engineering department is considering establishing a goal that the ratio for each subject area should be equal to or greater than unity for either the morning or afternoon examination. The findings in Table 11 indicate that this has been accomplished, on average, in the morning exam for the six years between 1998-2003. Nevertheless, the afternoon ratios indicate that these exams have been more difficult for the students. However, Tables 9 & 10 show the goal has not been met for the three-year period, 1998-2000. Specifically, chemistry (0.94 / 0.76), dynamics (0.94 / 0.89) and mathematics (0.98 / 0.75) do not meet the criteria. However, these problems were solved during the 2001-2003 time period. Nevertheless, Material Science/Structure of Matter (0.91 / 0.90) does not meet the goal for 2001-2003. A new faculty member has been hired in the materials area which should solve this problem. Overall, the findings of this investigation indicate that the use of the FE exam to measure student performance yields considerable data for comparison purposes which may be utilized to assess and improve an engineering program. # Bibliography: - 1. Criteria for accreditating engineering programs. (2004). Accreditation Board for Engineering and Technology (ABET). Baltimore, Maryland. - 2. "Engineering Licensure: A path of opportunity." (2004), National Council of Examiners for Engineering and Surveying, Clemson, South Carolina. - 3. Exam Pass Rates. (2004). http://www.ncees.org - 4. "Frequently Asked Questions." (2003). www.ncees.org - 5. Fundamentals of Engineering (FE) Exam review. (1986). Task committee report to the ASCE Board of Direction, ASCE, New York, N.Y. - 6. Koehn, E. (2004). "Professional accreditation, assessment and licensing- Fundamentals of Engineering exam." (with R.D.Malani). Proceedings, International Conference on Education and Research, Prague, Czech Republic, N: 34, ISSN 1562-3580. - 7. Koehn, E. (1999). "Professional Design Component for Civil Engineering." Journal of Professional Issues in Engineering Education and Practice." ASCE, 125(2), 35-39. - 8. Koehn, E. (1989). "Fundamentals of Engineering (FE) exam: motivation/review enhances pass rate." Journal of Professional Issues in Engineering." ASCE, 115(3), 289-296. - 9. LeFevre, W., Smith, F., Steadman, F. and White, K. (2002). "Using the Fundamentals of Engineering (FE) Examination to assess Academic Programs." NCEES, Clemson, South Carolina. - 10. "NCEES Exam study material." (2003) . www.ncees.org - 11. LeFevre, W., Smith, F., Steadman, F. and Whiteman, K. (2004). "Effective and efficient use of the Fundamentals of Engineering (FE) exam for outcome assessment." Presented at the ASEE annual Conference, June 21, Session 1496. - 12. Wicker R.B. (1999). "Evaluation model using Fundamentals of Engineering Exam." Journal of Professional Issues in Engineering Education and Practice, ASCE 129(2), 47-58. ## Enno "Ed" Koehn Enno "Ed" Koehn is a Professor of Civil Engineering at Lamar University, Beaumont, Texas. Professor Koehn has served as a principal investigator for several research and development projects dealing with various aspects of construction and has experience in the design, scheduling and estimating of facilities. In addition, he has authored/co-authored over 200 papers and presentations in engineering education and the general areas of Civil and Construction Engineering. Dr.Koehn is as member of ASEE, AACE International, ASCE, NSPE, Chi Epsilon, Tau Beta Pi, and Sigma Xi and is a licensed Professional Engineer and surveyor. #### Venkata.R.Mandalika Venkata.R.Mandalika is currently a graduate student of Civil Engineering at Lamar University, Beaumont, Texas. He has served as a Research Assistant at Chaitanya Bharathi Institute of Technology (C.B.I.T), Hyderabad, India. In addition, he has authored/co-authored 10 technical papers at various national and international conferences in the field of Civil Engineering. Mr.Venkata is a member of ASCE, ISTE New Delhi – India, and Chi Epsilon. | | Table 1. | Lumber C | 100 | | | | | | | | | | | | | |--|---------------------------|--|---|----------|--|--
---|--|--|---|--|--|---|---|--| | SUBJECT | Oct-03 | Apr-03 | AVG | Oct-02 | Apr-02 | AVG | Apr-01 | AVG | Oct-00 | Apr-00 | AVG | Oct-99 | AVG | Apr-98 | AVG | | 0000201 | 00100 | 7 ipi -00 | 2003 | 00102 | 7101-02 | 2002 | riproi | 2001 | 00000 | 7.01-00 | 2000 | 00100 | 1999 | 7101-00 | 1998 | | CHEMISTRY | 82 | 82 | 82.0 | 55 | 59 | 57.7 | 73 | 73 | 45 | 64 | 49.8 | 59 | 59 | 45 | 45 | | COMPUTERS | 71 | 36 | 47.7 | 71 | 50 | 57.0 | 100 | 100 | 43 | 29 | 39.5 | 79 | 79 | 57 | 57 | | DYNAMICS | 78 | 56 | 63.3 | 56 | 67 | 63.3 | 78 | 78 | 70 | 33 | 60.8 | 61 | 61 | 33 | 33 | | ELECTRICAL CIR. | 50 | 50 | 50.0 | 33 | 38 | 36.3 | 58 | 58 | 61 | 42 | 56.3 | 42 | 42 | 42 | 42 | | ENGINEERING ECO. | 60 | 20 | 33.3 | 80 | 70 | 73.3 | 80 | 80 | 100 | 40 | 85.0 | 70 | 70 | 80 | 80 | | ETHICS | 100 | 80 | 86.7 | 40 | 60 | 53.3 | 80 | 80 | 53 | 80 | 59.8 | 85 | 85 | 100 | 100 | | FLUID MECHANICS | 38 | 63 | 54.7 | 50 | 56 | 54.0 | 75 | 75 | 38 | 75 | 47.3 | 66 | 66 | 75 | 75 | | MAT SCI/ STR MAT. | 75 | 38 | 50.3 | 25 | 19 | 21.0 | 75 | 75 | 71 | 63 | 69.0 | 72 | 72 | 75 | 75 | | MATHEMATICS | 79 | 75 | 76.3 | 79 | 71 | 73.7 | 58 | 58 | 58 | 54 | 57.0 | 67 | 67 | 50 | 50 | | MECH OF MATL. | 63 | 56 | 58.3 | 50 | 75 | 66.7 | 75 | 75 | 67 | 38 | 59.8 | 50 | 50 | 75 | 75 | | STATICS | 50 | 58 | 55.3 | 75 | 75 | 75.0 | 58 | 58 | 67 | 50 | 62.8 | 85 | 85 | 75 | 75 | | THERMODYNAMICS | 45 | 50 | 48.3 | 45 | 45 | 45.0 | 36 | 36 | 61 | 55 | 59.5 | 50 | 50 | 45 | 45 | | TIERWOOD INAMICS | 45 | 30 | 40.0 | 43 | 40 | 40.0 | 30 | 30 | 01 | - 55 | 03.0 | 30 | - 00 | 45 | 40 | | | Table 2. | Nationa | l Grades | : Mornin | g sessio | n | | | | | | | | | | | SUBJECT | Oct-03 | Apr-03 | AVG | Oct-02 | Apr-02 | AVG | Apr-01 | AVG | Oct-00 | Apr-00 | AVG | Oct-99 | AVG | Apr-98 | AVG | | | 1 | | 2003 | | | 2002 | | 2001 | | | 2000 | | 1999 | | 1998 | | CHEMISTRY | 55 | 72 | 63.5 | 60 | 62 | 61 | 64 | 64 | 48 | 58 | 53.0 | 56 | 56 | 54 | 54 | | COMPUTERS | 56 | 54 | 55.0 | 62 | 62 | 62 | 74 | 74 | 44 | 55 | 49.5 | 61 | 61 | 57 | 57 | | DYNAMICS | 60 | 62 | 61.0 | 54 | 56 | 55 | 61 | 61 | 56 | 47 | 51.5 | 58 | 58 | 55 | 55 | | ELECTRICAL CIR. | 37 | 42 | 39.5 | 38 | 42 | 40 | 56 | 56 | 37 | 41 | 39.0 | 41 | 41 | 45 | 45 | | ENGINEERING ECO. | 63 | 59 | 61.0 | 69 | 67 | 68 | 65 | 65 | 56 | 58 | 57.0 | 57 | 57 | 61 | 61 | | ETHICS | 63 | 74 | 68.5 | 66 | 62 | 64 | 80 | 80 | 74 | 73 | 73.5 | 80 | 80 | 80 | 80 | | LUID MECHANICS | 55 | 51 | 53.0 | 55 | 55 | 55 | 67 | 67 | 43 | 58 | 50.5 | 57 | 57 | 62 | 62 | | MAT SCI/ STR MAT. | 55 | 52 | 53.5 | 48 | 48 | 48 | 59 | 59 | 49 | 49 | 49.0 | 60 | 60 | 54 | 54 | | MATHEMATICS | 64 | 64 | 64.0 | 57 | 63 | 60 | 57 | 57 | 52 | 55 | 53.5 | 60 | 60 | 64 | 64 | | | | | 04.0 | 07 | | | | | | | 45.0 | 55 | 55 | 55 | 55 | | | | 57 | 505 | 57 | 57 | 57 | 1 64 1 | 64 | | | | | | | | | MECH OF MATL. | 62 | 57 | 59.5 | 57 | 57 | 57 | 64 | 64 | 41 | 49 | | | | | | | MECH OF MATL. STATICS THERMODYNAMICS | 62
55
44 | 56
45 | 55.5
44.5 | 64 43 | 64
46 | 64
44.5 | 64
49
52 | 49
52 | 54
38 | 49
44
45 | 49.0
41.5 | 71 45 | 71
45 | 59
50 | 59
50 | | MECH OF MATL.
STATICS
THERMODYNAMICS | 62
55
44 | 56
45
Lamar C | 55.5
44.5
ivil Engi | 64 43 | 64
46
Grades: | 64
44.5
Afternoo | 49
52
on Genera | 49
52
al Exam | 54
38
nation | 44
45 | 49.0
41.5 | 71
45 | 71
45 | 59
50 | 59
50 | | MECH OF MATL.
STATICS | 62
55
44 | 56
45 | 55.5
44.5 | 64 43 | 64
46 | 64
44.5 | 49
52 | 49
52 | 54
38 | 44 | 49.0 | 71 | 71 | 59 | 59 | | MECH OF MATL. STATICS THERMODYNAMICS SUBJECT | 62
55
44 | 56
45
Lamar C | 55.5
44.5
ivil Engi | 64 43 | 64
46
Grades: | 64
44.5
Afternoo | 49
52
on Genera | 49
52
al Exam | 54
38
nation | 44
45 | 49.0
41.5
AVG | 71
45 | 71
45
AVG | 59
50 | 59
50 | | MECH OF MATL. STATICS THERMODYNAMICS SUBJECT CHEMISTRY | 62
55
44 | 56
45
Lamar C
Apr-03 | 55.5
44.5
ivil Engi
AVG
2003
50 | 64 43 | 64
46
Grades:
Apr-02 | 64
44.5
Afternoo
2002
50 | 49
52
on General
Apr-01 | 49
52
al Exam
AVG
2001
20 | 54
38
nation
Oct-00 | 44
45
Oct-00 | 49.0
41.5
AVG
2000
29.8 | 71
45
Oct-99 | 71
45
AVG
1999
35 | 59
50
Apr-98 | 59
50
AV0
1998
40 | | MECH OF MATL. STATICS THERMODYNAMICS SUBJECT CHEMISTRY COMPUTERS | 62
55
44 | 56
45
Lamar C
Apr-03
50
50 | 55.5
44.5
ivil Engl
AVG
2003
50
50 | 64 43 | 64
46
Grades:
Apr-02
50
50 | Afternoo
AVG
2002
50 | 49
52
on General
Apr-01
20
67 | 49
52
al Exam
AVG
2001
20
67 | 54
38
nation
Oct-00
33
67 | 44
45
Oct-00
20
67 | 49.0
41.5
AVG
2000
29.8
67.0 | 71
45
Oct-99
35
58 | 71
45
AVG
1999
35
58 | 59
50
Apr-98
40
33 | AV0
1998
40
33 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30 | 55.5
44.5
ivil Engi
AVG
2003
50
50
30 | 64 43 | 64
46
Grades:
Apr-02
50
50 | 64
44.5
Afternoo
2002
50
50 | 49
52
on General
Apr-01
20
67
60 | 49
52
al Exam
AVG
2001
20
67
60 | 54
38
nation
Oct-00
33
67
40 | 44
45
Oct-00
20
67
0 | AVG
2000
29.8
67.0
30.0 | 71
45
Oct-99
35
58
45 | 71
45
AVG
1999
35
58
45 | 59
50
Apr-98
40
33
20 | AV0
1998
40
33
20 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30
8 | 55.5
44.5
ivil Engi
AVG
2003
50
50
30
8 | 64 43 | 64
46
Grades:
Apr-02
50
50
10
33 | Afternoo
2002
50
10
33 | 49
52
on General
Apr-01
20
67
60
17 | 49
52
al Exam
AVG
2001
20
67
60
17 | 54
38
nation
Oct-00
33
67
40
67 | 44
45
Oct-00
20
67
0
17 | AVG
2000
29.8
67.0
30.0
54.5 | 71
45
Oct-99
35
58
45
21 | 71
45
AVG
1999
35
58
45
21 | 59
50
Apr-98
40
33 | AV0
1996
40
33
20
50 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30 | 55.5
44.5
ivil Engi
AVG
2003
50
50
30 | 64 43 |
64
46
Grades:
Apr-02
50
50 | 64
44.5
Afternoo
2002
50
50 | 49
52
on General
Apr-01
20
67
60 | 49
52
al Exam
AVG
2001
20
67
60 | 54
38
nation
Oct-00
33
67
40 | 44
45
Oct-00
20
67
0 | AVG
2000
29.8
67.0
30.0 | 71
45
Oct-99
35
58
45 | 71
45
AVG
1999
35
58
45 | 59
50
Apr-98
40
33
20
50 | AV0
1998
40
33
20
50 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30
8
50
67 | 55.5
44.5
ivil Engi
AVG
2003
50
50
30
8
50
67 | 64 43 | 64
46
Apr-02
50
50
10
33
67
67 | Afternoo
2002
50
50
10
33
67
67 | 49
52
on General
Apr-01
20
67
60
17
33
67 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67 | 54
38
Ination
Oct-00
33
67
40
67
56
78 | 0ct-00
20
67
0
17
33 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5 | 71
45
Oct-99
35
58
45
21
58
75 | 71
45
45
1999
35
58
45
21
58
75 | 59
50
50
Apr-98
40
33
20
50
0 | AV0
1998
40
33
20
50
0 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ENGINEERING ECO. ETHICS FLUID MECHANICS | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30
8
50
67
50 | 55.5
44.5
44.5
AVG
2003
50
50
30
8
50
67
50 | 64 43 | 64
46
Grades:
Apr-02
50
50
10
33
67
67
50 | Afternoo
2002
50
10
33
67 | 49
52
on General
Apr-01
20
67
60
17
33
67
25 | 49
52
al Exam
AVG
2001
20
67
60
17
33 | 54
38
nation
Oct-00
33
67
40
67
56 | 0ct-00
20
67
0
17
33
100
50 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0 | 71
45
Oct-99
35
58
45
21
58 | 71
45
AVG
1999
35
58
45
21
58 | 59
50
Apr-98
40
33
20
50 | AV0
1998
40
33
20
50 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI/STR MAT. | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30
8
50
67
50
67 | 55.5
44.5
44.5
AVG
2003
50
50
30
8
50
67
50 | 64
43 | 64
46
Apr-02
50
50
10
33
67
67
50
33 | Afternoo
2002
50
50
10
33
67
67
50
33 | 49
52
Apr-01
20
67
60
17
33
67
25
33 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67
25
33 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67 | 0ct-00
20
67
0
17
33
100
50 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5 | 71
45
Oct-99
35
58
45
21
58
75
63
75 | 71
45
45
1999
35
58
45
21
58
75
63
75 | 59
50
Apr-98
40
33
20
50
0
100
25
0 | AV0
1998
40
33
20
50
0
100
25
0 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI'STR MAT. MATHEMATICS | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30
8
50
67
50
67
46 | 55.5
44.5
44.5
AVG
2003
50
50
30
8
50
67
50
67
46 | 64
43 | 64
46
Apr-02
50
50
10
33
67
67
50
33
75 | Afternoo
2002
50
50
10
33
67
67
50
33
75 | 49
52
DO General
Apr-01
20
67
60
17
33
67
25
33
50 | AVG
2001
20
67
60
17
33
67
25
33
50 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33 | 0ct-00
20
67
0
17
33
100
50
33
25 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0 | 71
45
Oct-99
35
58
45
21
58
75
63 | 71
45
1999
35
58
45
21
58
75
63
75 | 59
50
Apr-98
40
33
20
50
0
100
25
0
42 | AV0
1996
40
33
20
0
100
25
0
42 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI'STR MAT. MATHEMATICS MECH OF MATL. | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30
8
50
67
50
67
46
63 | 55.5
44.5
44.5
ivil Engi
2003
50
50
30
8
50
67
50
67
46
63 | 64
43 | 64
46
46
Apr-02
50
50
10
33
67
67
50
33
75
63 | Afternoo
AVG
2002
50
50
10
33
67
67
50
33
75
63 | Apr-01 Apr-01 20 67 60 17 33 67 25 33 50 50 | AVG
2001
20
67
60
17
33
67
25
33
50 | 54
38
Ination
Oct-00
33
67
40
67
56
78
50
67
33
17 | 0ct-00
20
67
0
17
33
100
50
33
25
75 | 49.0
41.5
AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
31.0
31.5 | 71
45
Oct-99
35
58
45
21
58
75
63
40
44 | 71
45
AVG
1999
35
58
45
21
58
75
63
75
40 | 59
50
Apr-98
40
33
20
50
0
100
25
0
42
25 | AVC
1998
40
33
20
0
0
100
25
0
42
25 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS -LUID MECHANICS MAT SCI/ STR MAT. MATHEMATICS MECH OF MATL. BTATICS | 62
55
44 | 56
45
Lamar C
Apr-03
50
50
30
8
50
67
50
67
46 | 55.5
44.5
44.5
AVG
2003
50
50
30
8
50
67
50
67
46 | 64
43 | 64
46
Apr-02
50
50
10
33
67
67
50
33
75 | Afternoo
2002
50
50
10
33
67
67
50
33
75 | 49
52
DO General
Apr-01
20
67
60
17
33
67
25
33
50 | AVG
2001
20
67
60
17
33
67
25
33
50 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33 | 0ct-00
20
67
0
17
33
100
50
33
25 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0 | 71
45
Oct-99
35
58
45
21
58
75
63
75 | 71
45
1999
35
58
45
21
58
75
63
75 | 59
50
Apr-98
40
33
20
50
0
100
25
0
42 | AV0
1996
40
33
20
0
100
25
0
42 | | MECH OF MATL.
STATICS
THERMODYNAMICS | 62
55
44
Table3. | 56
45
Lamar C
Apr-03
50
50
8
50
67
50
67
46
63
42
33 | 55.5
44.5
44.5
AVG
2003
50
50
8
50
67
50
67
46
63
42
33 | 64
43 | 64
46
Apr-02
50
50
10
33
67
67
50
33
75
63
58
42 | 64
44.5
Afternoo
2002
50
50
10
33
67
67
50
33
75
63
58
42 | 49
52
Apr-01
20
67
60
17
33
67
25
33
50
100
67 | AVG 2001 67 60 17 33 67 25 33 50 100 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33
17 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 | 49.0
41.5
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8 | 71
45
Oct-99
35
58
45
21
58
75
63
75
40
44
79 | 71
45
AVG
1999
35
58
45
21
58
75
63
75
40
44
79 | 59
50
40
33
20
0
100
25
0
42
25
50 | AV0
1998
40
33
20
0
100
25
0
42
25
50 | | SUBJECT SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FULID MECHANICS MAT SCI'STR MAT. MATHEMATICS MECH OF MATL. STATICS THERMODYNAMICS | 62
55
44
Table3. | 56
45
Lamar C
Apr-03
50
50
30
8
50
67
50
67
46
63
42
33 | 55.5
44.5
44.5
AVG
2003
50
50
30
8
50
67
50
67
46
63
42
33 | neering | 64
46
Apr-02
50
50
10
33
67
67
50
33
75
63
42 | Afternoo
AVG
2002
50
50
10
33
67
67
67
50
33
75
63
58
42 | 49
52
Apr-01
20
67
60
17
33
67
25
33
50
50
100
67 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67
25
33
50
100
67 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33
17
72
33 | 0ct-00
20
67
0
17
33
100
50
33
25
75
83
50 | 49.0
41.5
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 71
45
Oct-99
35
58
45
21
58
75
63
75
40
44
79
46 | 71
45
1999
35
58
45
21
58
75
63
75
40
44
79
46 | 59
50
40
33
20
50
0
100
25
0
42
25
50
33 | AV0
1998
40
33
20
50
0
100
25
0
42
25
50
33 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ELUID MECHANICS MAT SCI/ STR MAT. MATHEMATICS MECH OF MATL. STATICS | 62
55
44
Table3. | 56
45
Lamar C
Apr-03
50
50
8
50
67
50
67
46
63
42
33 | 55.5
44.5
44.5
ivil Engi
AVG
2003
50
50
67
50
67
46
63
42
33 | neering | 64
46
Apr-02
50
50
10
33
67
67
50
33
75
63
58
42 |
64
44.5
Afternoo
2002
50
50
10
33
67
67
50
33
75
63
58
42
eral Exal | 49
52
Apr-01
20
67
60
17
33
67
25
33
50
100
67 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67
25
33
50
50
100
67 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33
17 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 | AVG
2000
29.8
67.0
54.5
50.3
83.5
50.0
31.5
74.8
37.3 | 71
45
Oct-99
35
58
45
21
58
75
63
75
40
44
79 | 71
45
1999
35
58
45
21
58
75
63
75
40
44
79
46 | 59
50
40
33
20
0
100
25
0
42
25
50 | AV0
1998
400
0
100
25
0
0
42
25
50
33 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ELUID MECHANICS MAT SCI/STR MAT. MATHEMATICS MECH OF MATL. STATICS THERMODYNAMICS SUBJECT | 62
55
44
Table3. | 56
45
Lamar C
Apr-03
50
50
8
50
67
50
67
46
63
42
33
Nationa | 55.5
44.5
44.5
AVG
2003
50
50
8
50
67
50
67
46
63
42
33 | neering | 64
46
Apr-02
50
50
10
33
67
67
50
33
75
63
58
42
Apr-02 | Afternood AVG 2002 50 50 10 33 67 67 50 33 67 63 58 42 AVG 2002 | 49
52
Apr-01
20
67
60
17
33
67
25
33
50
50
100
67
Apr-01 | 49
62
AVG
2001
20
67
60
17
33
67
25
33
50
50
100
67 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33
17
72
33 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
74.8
37.3 | 71 45 Oct-99 35 58 75 63 75 40 44 79 46 Oct-99 | 71
45
1999
35
58
45
21
58
75
63
75
40
44
79
46 | 59
50
40
33
20
0
100
25
0
42
25
50
33 | AV(0
19982
50
0
0
100
25
50
42
25
50
33
33
42
42
42
42
42
42
42
42
44
44
45
46
46
46
46
46
46
46
46
46
46
46
46
46 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ENGINEERING ECO. ETHICS ELUID MECHANICS ALT SCI/STR MAT. MATHEMATICS MECHOF MATL. STATICS HERMODYNAMICS CHEMISTRY CHEMISTRY CHEMISTRY CHEMISTRY | 62
55
44
Table3. | 56
45
Lamar C
Apr-03
50
50
8
50
67
50
67
46
63
42
33
Nationa
Apr-03 | 55.5
44.5
44.5
AVG
2003
50
50
8
50
67
50
67
46
63
42
33 | neering | 64
46
Apr-02
50
50
10
33
67
67
50
33
75
63
58
42
Apr-02 | Afternood AVG 2002 50 50 10 33 67 67 50 33 75 63 58 42 AVG 2002 39 | 49 52 52 50 67 60 67 50 100 67 67 67 67 67 50 100 67 67 67 67 67 67 67 67 67 67 67 67 67 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67
25
33
50
100
67
AVG | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33
17
72
33 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.5
74.8
37.3 | 71 45 Oct-99 35 58 45 75 63 75 40 44 79 46 Oct-99 | AVG
1999
35
58
45
75
63
75
40
44
79
46 | 59
50
40
33
20
50
0
100
25
0
42
25
50
33 | AV0
1991
400
200
0
100
255
500
333
AV0
1991
54 | | SUBJECT CHEMISTRY COMPUTERS PLUID MECHANICS THICS THERMODYNAMICS SUBJECT CHEMISTRY COMPUTERS COMPUTERS CHEMISTRY COMPUTERS CHEMISTRY COMPUTERS CHEMISTRY COMPUTERS CHEMISTRY COMPUTERS CHEMISTRY COMPUTERS | 62
55
44
Table3. | 56
45
Lamar C
Apr-03
50
50
8
50
67
50
67
46
63
42
33
Nationa
Apr-03 | 55.5
44.5
44.5
AVG
2003
50
50
67
50
67
46
63
42
33
I Grades
AVG
2003
50
76 | neering | 64
46
Apr-02
50
50
50
10
33
67
67
50
33
75
63
58
42
Apr-02
39
59 | Afternood AVG 2002 50 50 10 33 67 67 50 33 75 63 58 42 AVG 2002 202 39 59 | 49 52 52 50 67 60 67 60 67 67 60 67 67 67 67 67 67 67 67 67 67 67 67 68 67 68 67 68 68 68 68 68 68 68 68 68 68 68 68 68 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67
25
33
50
100
67
AVG
2001
57
63 | 54
38
nation
Oct-00
33
67
40
67
56
78
50
67
33
17
72
33 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 79 46 Oct-99 | 71
45
1999
35
58
45
21
58
75
63
75
40
44
79
46 | 59
50
40
33
20
50
0
100
25
0
42
25
50
33
Apr-98 | AV0
1991
40
33
20
0
100
25
0
42
25
50
33
33 | | SUBJECT CHEMISTRY COMPUTERS OYNAMICS CHECHOCK STRICS CHEMISTRY COMPUTERS OYNAMICS CHECHOCK CHEMISTRY COMPUTERS OYNAMICS CHECHOCK CHECHOCK CHEMISTRY COMPUTERS OF MATL. CHEMISTRY COMPUTERS OYNAMICS CHEMISTRY COMPUTERS OYNAMICS | 62
55
44
Table3. | 56
45
Apr-03
50
50
30
8
50
67
50
67
46
63
42
33
Nationa
Apr-03 | 55.5
44.5
44.5
AVG
2003
50
50
67
50
67
46
63
42
33
I Grades
AVG
2003
8
50
67
76
33 | neering | 64
46
Apr-02
50
50
10
33
67
67
50
33
75
63
58
42
Apr-02
39
59 | Afternoo
AVG
2002
50
50
10
33
67
67
50
33
75
63
58
42
eral Exal
AVG
2002
39
59
39 | 49 52 52 50 67 60 17 33 50 50 100 67 67 67 68 40 40 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67
25
33
50
100
67
AVG
2001
57
63
40 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 | AVG
2000
29.8
67.0
30.0
54.5
50.0
58.5
31.0
31.5
74.8
37.3
AVG
2000
43.5
46.0
37.0 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 79 46 Oct-99 | 71
45
1999
35
58
45
21
58
75
63
75
40
44
79
46 | 59
50
40
33
20
50
0
100
25
0
42
25
50
33
Apr-98 | AVV
199
400
333
200
1000
25
500
333
AVV
199
54
65
65
25 | | SUBJECT CHEMISTRY COMPUTERS OYNAMICS LECTRICAL CIR. INGINEERING ECO. ITHICS AAT SCI/STR MAT. MATHEMATICS MECH OF MATL. STATICS CHEMISTRY COMPUTERS OYNAMICS ACTION COMPUTERS OYNAMICS CHEMISTRY COMPUTERS OYNAMICS CHEMISTRY COMPUTERS OYNAMICS CHEMISTRY COMPUTERS OYNAMICS CHECTRICAL CIR. | 62
55
44
Table3. | 56
45
Apr-03
50
50
67
50
67
46
63
42
33
Nationa
Apr-03 | 55.5
44.5
44.5
AVG
2003
50
67
50
67
46
63
42
33
I Grades
AVG
2003
50
76
37
37 | neering | 64
46
Apr-02
50
50
10
33
67
67
50
33
75
63
58
42
Apr-02
Apr-02
39
59
39
45 | Afternood AVG 2002 50 50 10 33 67 67 50 58 42 eral Exal | Apr-01 20 67 60 17 33 67 25 33 50 50 100 67 Apr-01 Apr-01 57 63 40 27 | 49
62
AVG
2001
20
67
60
17
33
67
25
30
50
100
67
AVG
2001
57
63
40
27 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 32 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 43 56 34 37 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
31.5
74.8
37.3
AVG
2000
43.5
46.0
37.0
34.5 | 71 45 Oct-99 35 58 75 63 75 40 44 79 46 Oct-99 40 56 45 29 | AVG
1999
35
58
75
63
75
40
44
79
46
AVG
1999
40
56
45
29 | Apr-98 Apr-98 40 33 20 50 0 100 25 50 33 Apr-98 54 65 25 41 | AVV
199
400
255
500
333
200
0 0
422
555
333
AVV
199
544
445
447
447
447
447
447
447
447
447 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ALLID MECHANICS COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. | 62
55
44
Table3. | 56
45
Apr-03
50
50
67
50
67
46
63
42
33
Nationa
Apr-03
50
76
37
37 | 55.5
44.5
44.5
AVG
2003
50
50
8
50
67
46
63
42
33
I Grades
AVG
2003
50
76
30
30
30
47
48
49
40
30
30
40
40
40
40
40
40
40
40
40
40
40
40
40 | neering | 64 46 Apr-02 50 50 10 33 67 67 50 33 75 63 58 42 Apr-02 39 59 39 45 50 | Afternood AVG 2002 50 50 10 33 67 67 50 33 75 63 58 42 AVG 2002 39 59 39 46 50 | 49 52 52 50 67 60 67 67 60 67 67 60 67 67 67 60 67 67 60 67 67 60 67 67 60 67
60 67 | 49
62
AVG
2001
20
67
60
17
33
67
25
33
50
50
100
67
AVG
2001
57
63
40
27
39 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 32 40 | Oct-00 20 67 0 17 33 100 50 33 50 Oct-00 43 56 34 37 38 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
74.8
37.3
AVG
2000
43.5
46.0
37.0
34.5
39.0 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 79 46 Oct-99 40 56 45 29 41 | 71
45
1999
35
58
45
21
58
75
63
75
40
44
79
46
1999
40
56
45
29
41 | 59
50
40
33
20
0
100
25
0
42
25
50
33
Apr-98
54
65
25
41
38 | 59
50
40
199
40
25
50
0
0
100
25
50
50
100
100
100
100
100
100
100
100 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ELUID MECHANICS AMAT SCI/ STR MAT. MATHEMATICS MECH OF MATL. STATICS CHEMISTRY COMPUTERS SUBJECT CHEMISTRY COMPUTERS SUBJECT CHEMISTRY COMPUTERS CHEMISTRY COMPUTERS COMPUTERS CHEMISTRY CHEM | 62
55
44
Table3. | 56
45
Apr-03
50
50
67
50
67
46
63
42
33
Nationa
Apr-03
50
76
37
54
65 | 55.5
44.5
44.5
AVG
2003
50
50
8
50
67
50
67
46
63
42
33
50
FO
46
63
42
33
50
76
30
30
40
40
40
40
40
40
40
40
40
40
40
40
40 | neering | 64 46 Apr-02 50 50 10 33 67 67 50 33 75 63 58 42 Apr-02 39 59 39 45 50 66 | Afternood AVG 2002 50 50 10 33 67 67 50 33 76 63 58 42 AVG 2002 39 59 39 45 50 66 | 49 52 Apr-01 20 67 60 17 33 67 25 33 50 100 67 Apr-01 Apr-01 57 63 40 27 39 74 | 49
52
AVG
2001
20
67
60
17
33
67
25
33
50
100
67
AVG
2001
57
63
40
27
39
74 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 32 40 82 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 43 56 34 37 38 77 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 79 46 Oct-99 40 56 45 29 41 70 | 71
45
1999
35
58
45
75
63
75
40
44
79
46
AVG
1999
40
56
45
29
41
70 | 59
50
40
33
20
0
100
25
0
42
25
50
33
33
40
42
42
42
42
42
42
42
42
42
42
42
42
42 | AV(199) 544 655 255 411 388 888 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS STATICS CHEMISTRY CHEMISTRY COMPUTERS DYNAMICS CHICS | 62
55
44
Table3. | 56
45
Apr-03
50
50
50
67
50
67
46
63
42
33
Nationa
Apr-03
50
76
37
54
65
42 | 55.5
44.5
44.5
AVG
2003
50
50
67
50
67
46
63
42
33
SI Grades
AVG
2003
50
76
37
37
50
44
42
42
42
42
42
44
45
46
46
46
46
46
47
47
48
48
48
48
48
48
48
48
48
48
48
48
48 | neering | 64
46
Apr-02
50
50
50
10
33
67
67
50
33
75
63
58
42
Apr-02
39
59
39
45
50
66
54 | Afternood AVG 2002 50 50 10 33 67 67 50 33 75 63 58 42 AVG 2002 39 59 39 45 50 66 54 | 49 52 Apr-01 20 67 60 17 33 67 25 33 50 100 67 Mination Apr-01 57 63 40 27 39 74 34 | AVG 2001 57 63 40 27 39 74 34 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 32 40 82 40 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 43 56 34 37 38 77 31 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.5
74.8
37.3
AVG
2000
43.5
46.0
37.0
34.5
39.0
79.5 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 79 46 Oct-99 40 56 45 29 41 70 58 | AVG
1999
35
58
45
21
58
75
63
75
40
44
79
46
AVG
1999
40
56
45
29
41
70
58 | 59
50
50
40
33
20
50
0
100
25
0
42
25
50
33
33
40
42
25
50
41
42
42
45
46
46
46
46
46
46
46
46
46
46
46
46
46 | AV(1993) 400 333 200 00 1000 255 500 333 AV(1999) 544 655 255 411 388 88 88 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS THERMODYNAMICS SUBJECT CHEMISTRY COMPUTERS DYNAMICS THERMODYNAMICS STATICS THERMODYNAMICS THERMODYNAMICS CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ELUID MECHANICS MAT SCI/ STR MAT. | 62
55
44
Table3. | 56
45
Apr-03
50
50
30
8
50
67
50
67
46
63
42
33
Nationa
Apr-03
50
76
37
37
50
65
42
65
42
65 | 55.5
44.5
44.5
AVG
2003
50
50
67
50
67
46
63
42
33
I Grades
AVG
2003
50
76
37
37
54
65
42
65 | neering | 64 46 Apr-02 50 50 10 33 67 67 50 33 75 63 58 42 Apr-02 Apr-02 39 59 39 45 50 66 54 49 | Afternood AVG 2002 50 50 10 33 67 67 50 33 75 63 58 42 AVG 2002 39 59 39 45 50 66 54 49 | 49 52 52 50 67 60 67 60 67 67 60 67 67 60 67 67 60 67 67 60 67 67 67 67 67 67 67 68 67 69 67 69 67 69 69 67 69 69 67 69 69 69 69 69 69 69 69 69 69 69 69 69 | AVG 2001 67 60 67 60 40 27 39 74 34 36 65 62 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 32 40 32 40 30 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 43 56 34 37 38 77 31 61 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
AVG
2000
43.5
46.0
37.0
34.5
39.0
79.5
35.5 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 47 79 46 Oct-99 40 56 45 29 41 70 58 53 | AVG
1999
35
58
45
21
58
75
63
75
40
44
79
46
AVG
1999
40
56
45
29
41
70
58
53 | 59
50
40
33
20
0
100
25
0
42
25
50
33
Apr-98
54
65
25
41
38
88
56
43 | AV0
1998
40
33
20
0
100
25
0
42
25
50
33
33
42
25
42
25
42
25
42
25
42
42
42
42
42
43
44
44
45
45
45
45
45
45
45
45
45
45
45 | | SUBJECT CHEMISTRY COMPUTERS OYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI'STR MAT. MATHEMATICS MECH OF MATL. STATICS THERMODYNAMICS SUBJECT CHEMISTRY COMPUTERS OYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT. CHEMISTRY COMPUTERS OYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI'STR MAT. MATHEMATICS | 62
55
44
Table3. | 56 45 Lamar C Apr-03 50 50 30 8 50 67 46 63 42 33 Nationa Apr-03 50 76 37 37 54 65 42 62 47 | 55.5
44.5
44.5
AVG
2003
50
50
67
50
67
46
63
42
33
1 Grades
AVG
2003
50
76
37
37
50
42
42
42
42
42
47 | neering | 64 46 Apr-02 50 50 10 33 67 67 50 33 75 63 58 42 Apr-02 Apr-02 39 59 39 45 50 66 54 49 62 | Afternoo
AVG
2002
50
50
10
33
67
67
50
33
75
63
58
42
AVG
2002
39
59
45
50
66
50
67
63
58
42
42
45
67
67
67
67
67
67
67
67
67
67 | 49 52 52 50 67 60 17 33 67 25 33 50 100 67 67 63 40 27 39 74 34 36 52 | 49
52
al Exam
AVG
2001
20
67
60
17
33
67
25
33
50
100
67
AVG
2001
57
63
40
27
39
74
34
36
52 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 32 40 82 40 82 40 30 42 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 43 56 34 37 38 77 31 61 49 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
31.5
74.8
37.3
AVG
2000
43.5
37.0
34.5
39.0
79.5
35.5
45.5 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 6 Oct-99 40 56 45 29 41 70 58 53 54 | 71
45
1999
35
58
45
21
58
75
63
75
40
44
79
46
AVG
1999
40
56
45
29
41
70
58
58
58 | 59 50 50 50 50 50 50 50 50 50 50 50 50 50 | AV0
1998
40
33
20
0
100
25
50
33
33
AV0
1998
42
25
50
1998
42
25
50
42
42
42
42
43
43
44
45
45
45
45
45
45
45
45
45
45
45
45 | | SUBJECT SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FULID MECHANICS MAT SCI'STR MAT. MATHEMATICS MECH OF MATL. STATICS
THERMODYNAMICS | 62
55
44
Table3. | 56
45
Apr-03
50
50
30
8
50
67
50
67
46
63
42
33
Nationa
Apr-03
50
76
37
37
50
65
42
65
42
65 | 55.5
44.5
44.5
AVG
2003
50
50
67
50
67
46
63
42
33
I Grades
AVG
2003
50
76
37
37
54
65
42
65 | neering | 64 46 Apr-02 50 50 10 33 67 67 50 33 75 63 58 42 Apr-02 Apr-02 39 59 39 45 50 66 54 49 | Afternood AVG 2002 50 50 10 33 67 67 50 33 75 63 58 42 AVG 2002 39 59 39 45 50 66 54 49 | 49 52 52 50 67 60 67 60 67 67 60 67 67 60 67 67 60 67 67 60 67 67 67 67 67 67 67 68 67 69 67 69 67 69 69 67 69 69 67 69 69 69 69 69 69 69 69 69 69 69 69 69 | AVG 2001 67 60 67 60 40 27 39 74 34 36 65 62 | 54 38 nation Oct-00 33 67 40 67 56 78 50 67 33 17 72 33 Oct-00 44 36 40 32 40 32 40 30 | Oct-00 20 67 0 17 33 100 50 33 25 75 83 50 Oct-00 43 56 34 37 38 77 31 61 | AVG
2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
AVG
2000
43.5
46.0
37.0
34.5
39.0
79.5
35.5 | 71 45 Oct-99 35 58 45 21 58 75 63 75 40 44 47 79 46 Oct-99 40 56 45 29 41 70 58 53 | AVG
1999
35
58
45
21
58
75
63
75
40
44
79
46
AVG
1999
40
56
45
29
41
70
58
53 | 59
50
40
33
20
0
100
25
0
42
25
50
33
Apr-98
54
65
25
41
38
88
56
43 | AV0
1998
40
33
20
0
100
25
0
42
25
50
33
33
42
25
42
25
42
25
42
25
42
42
42
42
42
43
44
44
45
45
45
45
45
45
45
45
45
45
45 | | SUBJECT | 2003 | 2002 | 2001 | AVG | 2000 | 1999 | 1998 | AVG | |--|--|--|---|---|--|--|--|--| | | | | | 2001-2003 | | | 100000000000000000000000000000000000000 | 1998-2000 | | CHEMISTRY | 82.0 | 57.7 | 73 | 70.9 | 49.8 | 59 | 45 | 51.3 | | COMPUTERS | 47.7 | 57.0 | 100 | 68.2 | 39.5 | 79 | 57 | 58.5 | | DYNAMICS | 63.3 | 63.3 | 78 | 68.2 | 60.8 | 61 | 33 | 51.6 | | LECTRICAL CIR. | 50.0 | 36.3 | 58 | 48.1 | 56.3 | 42 | 42 | 46.8 | | ENGINEERING ECO. | 33.3 | 73.3 | 80 | 62.2 | 85.0 | 70 | 80 | 78.3 | | THICS | 86.7 | 53.3 | 80 | 73.3 | 59.8 | 85 | 100 | 81.6 | | LUID MECHANICS | 54.7 | 54.0 | 75 | 61.2 | 47.3 | 66 | 75 | 62.8 | | IAT SCI/ STR MAT. | 50.3 | 21.0 | 75 | 48.8 | 69.0 | 72 | 75 | 72.0 | | MATHEMATICS | 76.3 | 73.7 | 58 | 69.3 | 57.0 | 67 | 50 | 58.0 | | MECH OF MATL. | 58.3 | 66.7 | 75 | 66.7 | 59.8 | 50 | 75 | 61.6 | | STATICS | 55.3 | 75.0 | 58 | 62.8 | 62.8 | 85 | 75 | 74.3 | | HERMODYNAMICS | 48.3 | 45.0 | 36 | 43.1 | 59.5 | 50 | 45 | 51.5 | | | | | | | | | | | | | Table 6. | Nationa | Grades | (Three Year A | Average): Mo | orning S | ession | | | SUBJECT | 2003 | 2002 | 2001 | AVG | 2000 | 1999 | 1998 | AVG | | | | | | 2001-2003 | - 1 | | | 1998-2000 | | CHEMISTRY | 63.5 | 61 | 64 | 62.8 | 53.0 | 56 | 54 | 54.3 | | COMPUTERS | 55.0 | 62 | 74 | 63.7 | 49.5 | 61 | 57 | 55.8 | | YNAMICS | 61.0 | 55 | 61 | 59.0 | 51.5 | 58 | 55 | 54.8 | | LECTRICAL CIR. | 39.5 | 40 | 56 | 45.2 | 39.0 | 41 | 45 | 41.7 | | NGINEERING ECO. | 61.0 | 68 | 65 | 64.7 | 57.0 | 57 | 61 | 58.3 | | THICS | 68.5 | 64 | 80 | 70.8 | 73.5 | 80 | 80 | 77.8 | | LUID MECHANICS | 53.0 | 55 | 67 | 58.3 | 50.5 | 57 | 62 | 56.5 | | AT SCI/ STR MAT. | 53.5 | 48 | 59 | 53.5 | 49.0 | 60 | 54 | 54.3 | | ATHEMATICS | 64.0 | 60 | 57 | 60.3 | 53.5 | 60 | 64 | 59.2 | | ECH OF MATL. | 59.5 | 57 | 64 | 60.2 | 45.0 | 55 | 55 | 51.7 | | STATICS | 55.5 | 64 | 49 | 56.2 | 49.0 | 71 | 59 | 59.7 | | | 00.0 | 04 | | | | | | 45.5 | | | 44.5 | 44.5 | 52 | 47.0 | 41.5 | 45 | 50 | 45.5 | | | | 44.5 | 52 | 47.0 | 41.5 | 45 | 50 | 45.5 | | | 44.5 | | | 47.0 | | | | | | HERMODYNAMICS | 44.5 Table 7. | LamarC | ivil engi | neering Grade | es (Three yea | ar Averaç | ge): Afte | rnoon S | | | 44.5 | | | neering Grade | | | | rnoon S
AVG | | HERMODYNAMICS SUBJECT | 44.5 Table 7 . | LamarC
2002 | ivil engli
2001 | AVG
2001-2003 | es (Three year | ar Averaç
1999 | ge): Afte
1998 | rnoon S
AVG
1998-2000 | | SUBJECT | 44.5 Table 7 . 2003 | LamarC 2002 50 | ivil engii
2001
20 | AVG
2001-2003
40.0 | 2000
29.8 | 1999
35 | ge): Afte
1998
40 | rnoon S
AVG
1998-2000
34.9 | | SUBJECT CHEMISTRY COMPUTERS | Table 7. 2003 50 50 | 2002
50
50 | 2001
2001
20
67 | AVG
2001-2003
40.0
55.7 | 2000
29.8
67.0 | 1999
35
58 | ge): Afte | rnoon S
AVG
1998-2000
34.9
52.7 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS | Table 7. 2003 50 50 30 | 2002
50
50
10 | 2001
2006
67
60 | AVG
2001-2003
40.0
55.7
33.3 | 2000
29.8
67.0
30.0 | 1999
35
58
45 | 1998
40
33
20 | rnoon S
AVG
1998-2000
34.9
52.7
31.7 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. | 7able 7. 2003 50 50 30 8 | 2002
50
50
10
33 | 2001
20067
60
17 | AVG
2001-2003
40.0
55.7
33.3
19.3 | 2000
29.8
67.0
30.0
54.5 | 1999
35
58
45
21 | ge): Afte
1998
40
33
20
50 | rnoon S
AVG
1998-2000
34.9
52.7
31.7
41.8 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS LECTRICAL CIR. CINGINEERING ECO. | Table 7. 2003 50 50 30 8 50 | 2002
50
50
10
33
67 | 2001
20067
60
17
33 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0 | 2000
29.8
67.0
30.0
54.5
50.3 | 1999
35
58
45
21 | 1998
40
33
20
50 | rnoon S
AVG
1998-2000
34.9
52.7
31.7
41.8
36.1 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ENGINEETRICAL CIR. ENGINEERING ECO. | Table 7. 2003 50 50 30 8 50 67 | 2002
50
50
10
33
67
67 | 2001
2001
67
60
17
33
67 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0 | 2000
29.8
67.0
30.0
54.5
50.3
83.5 | 1999
35
58
45
21
58
75 | 1998
40
33
20
50
0 | rnoon S
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2 | | SUBJECT HEMISTRY OMPUTERS IYNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS | Table 7. 2003 50 50 30 8 50 67 | 2002
50
50
10
33
67
67
50 | 2001
2001
20
67
60
17
33
67
25 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0 | 1999
35
58
45
21
58
75
63 | 1998
40
33
20
50
0
100
25 | rnoon S
AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS LECTRICAL CIR. NIGINEERING ECO. CTHICS LUID MECHANICS MAT SCI/STR MAT. | 7able 7. 2003 50 50 30 8 50 67 50 67 |
2002
50
50
10
33
67
67
67
50
33 | 2001
2006
67
60
17
33
67
25
33 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0
41.7 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5 | 1999
35
58
45
21
58
75
63
75 | 1998
40
33
20
50
0
100
25
0 | rnoon S
AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. INGINEERING ECO. ETHICS LUID MECHANICS MAT SCI'STR MAT. MATHEMATICS | 50
50
30
8
50
67
50
67 | 2002
50
50
10
33
67
67
50
33
75 | 2001
2006
67
60
17
33
67
25
33
50 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0
41.7
44.3
57.0 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0 | 1999
35
58
45
21
58
75
63
75
40 | 1998
40
33
20
50
0
100
25
0 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. INGINEERING ECO. ETHICS ELUID MECHANICS MAT SCI'STR MAT. MATHEMATICS | 7able 7. 2003 50 50 30 8 50 67 50 67 | 2002
50
50
10
33
67
67
67
50
33 | 2001
2006
67
60
17
33
67
25
33 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0
41.7 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5 | 1999
35
58
45
21
58
75
63
75 | 1998
40
33
20
50
0
100
25
0 | rnoon S
AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5 | | SUBJECT HEMISTRY OMPUTERS YNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS IAT SCI/ STR MAT. IATHEMATICS IECH OF MATL. | 50
50
30
8
50
67
50
67 | 2002
50
50
10
33
67
67
50
33
75 | 2001
2006
67
60
17
33
67
25
33
50 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0
41.7
44.3
57.0 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0 | 1999
35
58
45
21
58
75
63
75
40 | 1998
40
33
20
50
0
100
25
0 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS LECTRICAL CIR. CINGINEERING ECO. CITHICS LUID MECHANICS HAT SCI/ STR MAT. MATHEMATICS MECH OF MATL. STATICS | Table 7. 2003 50 50 30 8 50 67 50 67 46 63 | 2002
50
50
10
33
67
67
50
33
67
67
50
33 | 2001
2001
20
67
60
17
33
67
25
33
50
50 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0
41.7
44.3
57.0
58.7 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5 | 1999
35
58
45
21
58
75
63
75
40
44 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5 | | THERMODYNAMICS | 50
50
30
8
50
67
50
67
46
63
42
33 | 2002
50
10
33
67
67
50
33
75
63
58
42 | 2001
2006
67
60
17
33
67
25
33
50
50
100
67 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
41.7
44.3
57.0
58.7
66.7
47.3 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | 1998
40
33
20
50
0
100
25
0
42
25
50
33 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS EVENTS | Table 7. 2003 50 50 30 8 50 67 50 67 46 63 42 33 Table 8. | 2002
50
50
10
33
67
67
50
33
75
63
58
42 | 2001 20067 600 17 33 67 25 33 500 100 67 | AVG
2001-2003
40.0
55.7
33.3
19.3
50.0
67.0
41.7
44.3
57.0
58.7
66.7
47.3 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 | rnoon S
AVG
1998-200
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS LAT SCI/STR MAT. MATHEMATICS HECH OF MATL. CTATICS | 50
50
30
8
50
67
50
67
46
63
42
33 | 2002
50
10
33
67
67
50
33
75
63
58
42 | 2001
2006
67
60
17
33
67
25
33
50
50
100
67 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 441.7 44.3 57.0 66.7 47.3 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | 1998
40
33
20
50
0
100
25
0
42
25
50
33 | rnoon S
AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8 | | SUBJECT HEMISTRY OMPUTERS YNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS LUID MECHANICS AT SCI/ STR MAT. ATHEMATICS HERMODYNAMICS SUBJECT | Table 7. 2003 50 50 30 8 50 67 50 67 46 63 42 33 Table 8. | 2002
50
10
33
67
67
50
33
75
63
58
42
Nationa | 2001 20 67 60 17 33 67 25 33 50 100 67 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | 1998
40
33
20
50
0
100
25
0
42
25
50
33
Session | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8 | | SUBJECT HEMISTRY OMPUTERS YNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS AT SCI/ STR MAT. ATHEMATICS ECH OF MATL. TATICS HERMODYNAMICS SUBJECT HEMISTRY | 44.5 Table 7. 2003 50 50 30 8 50 67 50 67 46 63 42 33 Table 8. | 2002
50
50
10
33
67
67
50
33
75
63
58
42
National | 2001 20 67 60 17 33 67 25 33 50 100 67 | AVG 2001-2003 40.0 65.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 (Three year AVG 2001-2003 48.7 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | 1998
40
33
20
50
0
100
25
0
42
25
50
33
Session | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8 | | SUBJECT HEMISTRY OMPUTERS YNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS AT SCI/ STR MAT. ATHEMATICS ECH OF MATL. TATICS HERMODYNAMICS SUBJECT HEMISTRY OMPUTERS | 44.5 Table 7. 2003 50 50 67 50 67 46 63 42 33 Table 8. 2003 | 2002 50 50 10 33 67 67 67 50 33 75 63 58 42 Nationa 2002 | 2001 2001 20 67 60 17 33 67 25 33 50 100 67 4 Grades 2001 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
Average): Aft | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 Session 1998 | rnoon S AVG 1998-2007 34.9 52.7 31.7 41.8 36.1 86.2 46.0 44.5 37.7 33.5 67.9 38.8 AVG 1998-2007 45.8 55.7 | | SUBJECT HEMISTRY OMPUTERS YNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS AT SCI/STR MAT. ATHEMATICS ECH OF MATL. TATICS HERMODYNAMICS SUBJECT HEMISTRY OMPUTERS YNAMICS | Table 7. 2003 50 50 67 50 67 46 63 42 33 Table 8. 2003 | 2002 50 10 33 67 50 33 75 63 33 75 842 Nationa 2002 39 59 39 | 2001 20 67 60 17 33 67 25 33 50 100 67 I Grades 2001 57 63 40 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 (Three year AVG 2001-2003 48.7 66.0 38.7 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
Average): Aft | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 Session 1998 54 65 25 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7 | | SUBJECT HEMISTRY OMPUTERS YNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS IAT SCI/ STR MAT. IATHEMATICS HERMODYNAMICS SUBJECT HEMISTRY OMPUTERS YNAMICS LECTRICAL CIR. | 44.5 Table 7. 2003 50 50 67 50 67 46 63 42 33 Table 8. 2003 | 2002 50 10 33 67 67 50 33 75 63 842 Nationa 2002 39 59 39 45 | 2001 20 67 60 17 33 67 25 33 50 100 67 I Grades 2001 57 63 40 27 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 (Three year AVG 2001-2003 48.7 66.0 38.7 36.3 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
Average): Aft | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | 1998
40
33
20
50
0
100
25
0
42
25
50
33
Session
1998
54
65
25
41 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7
34.8 | | SUBJECT HEMISTRY OMPUTERS INAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS IAT SCI/ STR MAT. IATHEMATICS HERMODYNAMICS SUBJECT HEMISTRY OMPUTERS INAMICS LICTRICAL CIR. | Table 7.
2003 50 50 67 50 67 46 63 42 33 Table 8. 2003 | 2002 50 10 33 67 50 33 75 63 33 75 842 Nationa 2002 39 59 39 | 2001 20 67 60 17 33 67 25 33 50 100 67 I Grades 2001 57 63 40 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 (Three year AVG 2001-2003 48.7 66.0 38.7 | 2000
29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
Average): Aft | 1999
35
58
45
21
58
75
63
75
40
44
79
46 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 Session 1998 54 65 25 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7 | | SUBJECT CHEMISTRY COMPUTERS SYNAMICS LECTRICAL CIR. NGINEERING ECO. THICS LUID MECHANICS MAT SCI/ STR MAT. MATHEMATICS MECH OF MATL. STATICS HERMODYNAMICS CHEMISTRY COMPUTERS SYNAMICS LICTRICAL CIR. NGINEERING ECO. | 44.5 Table 7. 2003 50 50 30 8 50 67 50 67 46 63 42 33 Table 8. 2003 50 76 37 37 54 | 2002 50 10 33 67 67 50 33 75 63 58 42 Nationa 2002 39 59 39 45 50 | 2001 20 67 60 17 33 67 25 33 50 100 67 Grades 2001 57 63 40 27 39 | AVG 2001-2003 40.0 65.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 66.7 47.3 47.3 47.3 48.7 66.0 38.7 36.3 47.7 | 29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3 | 1999
35
58
45
21
58
75
63
75
40
44
79
46
1999
40
56
45
29
41 | 1998 40 33 20 50 0 100 25 50 33 3 Session 1998 54 65 25 41 38 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7
34.8 | | SUBJECT CHEMISTRY COMPUTERS SYNAMICS CHICS | Table 7. 2003 50 50 67 50 67 46 63 42 33 Table 8. 2003 50 76 37 37 54 65 | 2002 50 50 10 33 67 67 67 50 33 75 63 58 42 Nationa 2002 39 59 39 45 50 66 | 2001 20067 600 177 33 67 25 33 500 1000 67 I Grades 2001 57 63 40 27 39 74 | AVG 2001-2003 48.7 66.0 38.7 36.3 47.7 68.3 40.0 | 2000 29.8 67.0 30.0 54.5 50.3 83.5 50.0 58.5 31.0 31.5 74.8 37.3 Average): Aft 2000 43.5 46.0 37.0 34.5 39.0 79.5 | 1999
35
58
45
21
58
75
63
75
40
44
79
46
1999
40
56
45
29
41
70 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 Session 1998 54 65 25 41 38 88 | rnoon S AVG 1998-2000 34.9 52.7 31.7 41.8 36.1 86.2 46.0 44.5 37.7 33.5 67.9 38.8 AVG 1998-2000 45.8 55.7 36.7 34.8 39.3 79.2 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ELUID MECHANICS MAT SCI/STR MAT. MATHEMATICS MECH OF MATL. ETATICS HERMODYNAMICS CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ELUID MECHANICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS ELUID MECHANICS | Table 7. 2003 50 50 67 50 67 46 63 42 33 Table 8. 2003 50 76 37 37 54 65 42 | 2002 50 10 33 67 50 33 75 63 58 42 Nationa 2002 39 59 39 45 50 66 54 | 2001 20067 600 177 333 67 25 333 500 100 67 I Grades 2001 57 63 40 27 39 74 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 66.7 47.3 (Three year A A A C 2001-2003 48.7 66.0 38.7 36.3 47.7 68.3 43.3 | 29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
2000
43.5
46.0
37.0
34.5
46.0
37.0
34.5
39.0
79.5 | 1999
35
58
45
21
58
75
63
75
40
44
79
46
1999
40
56
45
29
41
70
58 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 Session 1998 54 65 25 41 38 88 56 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7
35.7
34.8
39.3
79.2
49.8 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS LECTRICAL CIR. NIGINEERING ECO. ETHICS LUID MECHANICS MAT SCI/STR MAT. MATHEMATICS MECH OF MATL. STATICS CHEMISTRY COMPUTERS DYNAMICS LECTRICAL CIR. ENGINEERING ECO. ETHICS CHEMISTRY COMPUTERS COMPUT | Table 7. 2003 50 50 67 50 67 46 63 42 33 Table 8. 2003 50 76 37 37 54 65 42 62 | 2002 50 10 33 67 50 33 75 63 58 42 Nationa 2002 39 59 39 45 50 66 54 49 | 2001 20 67 60 17 33 67 25 33 50 100 67 I Grades 2001 57 63 40 27 39 74 34 36 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 68.7 66.7 47.3 (Three year AVG 2001-2003 48.7 66.0 38.7 36.3 47.7 68.3 43.3 49.0 | 29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
2000
43.5
46.0
37.0
34.5
39.0
79.5
35.5
45.5 | 1999
35
58
45
21
58
75
63
75
40
44
47
79
46
1999
40
56
45
29
41
70
58
58
53 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 Session 1998 54 65 25 41 38 88 88 86 64 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7
34.8
39.3
79.2
49.8 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ENGINEERING ECO. ETHICS LUID MECHANICS MAT SCI/STR MAT. MATHEMATICS HERMODYNAMICS SUBJECT CHEMISTRY COMPUTERS DYNAMICS LUID MECHANICS CHEMISTRY COMPUTERS DYNAMICS LUID MECHANICS LUID MECHANICS LUID MECHANICS LUID MECHANICS MAT SCI/STR MAT. MATHEMATICS | 44.5 Table 7. 2003 50 50 30 8 50 67 50 67 46 63 42 33 Table 8. 2003 50 76 37 37 54 65 42 62 47 | 2002 50 10 33 67 67 50 33 75 63 58 42 Nationa 2002 39 59 39 45 50 66 54 49 62 | 2001 20 67 60 17 33 67 25 33 50 100 67 I Grades 2001 57 63 40 27 39 74 34 36 52 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 47.3 47.3 48.7 66.0 38.7 36.3 47.7 68.3 43.9 49.0 53.7 | 29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
2000
43.5
46.0
37.0
34.5
39.0
79.5
45.5
45.5 | 1999
35
58
45
21
58
75
63
75
40
44
79
46
1999
40
56
45
29
41
70
58
53
54 | 1998 40 33 20 50 0 1000 25 50 33 3 Session 1998 54 65 25 41 38 88 56 43 51 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7
36.7
36.7
36.7
46.8
46.8
46.8
46.8
46.8
46.8
46.8
46.8 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS LUID MECHANICS MAT SCI/STR MAT. MATHEMATICS MECH OF MATL. ETATICS HERMODYNAMICS COMPUTERS DYNAMICS ELUID MECHANICS COMPUTERS DYNAMICS ELUID MECHANICS ENGINEERING ECO. ETHICS LUID MECHANICS MAT SCI/STR MAT. MATHEMATICS MAT SCI/STR MAT. MATHEMATICS MECH OF MATL. | Table 7. 2003 50 50 30 8 50 67 50 67 46 63 42 33 Table 8. 2003 50 76 37 54 65 42 62 47 25 | 2002 50 50 10 33 67 67 67 50 33 75 63 58 42 Nationa 2002 39 59 39 45 50 66 54 49 62 52 | 2001 20067 600 177 33 67 25 33 500 1000 67 I Grades 2001 57 63 40 27 39 74 34 36 52 49 | AVG 2001-2003 44.7 66.0 38.7 36.3 47.7 68.3 43.3 49.0 55.7 42.0 | 2000 29.8 67.0 30.0 54.5 50.3 83.5 50.0 58.5 31.0 31.5 74.8 37.3 Average): Aft 2000 43.5 46.0 37.0 34.5 39.0 79.5 35.5 45.5 41.0 | 1999
35
58
45
21
58
75
63
75
40
44
79
46
1999
40
56
45
29
41
70
58
53
54
42 | ge): Afte 1998 40 33 20 50 0 100 25 0 42 25 50 33 Session 1998 54 65 25 41 38 88 56 43 38 88 56 43 34 | AVG 1998-2000 34.9 52.7 31.7 41.8 36.2 46.0 44.5 37.7 33.5 67.9 38.8 AVG 1998-2000 45.8 55.7 36.7 34.9 49.8 47.2 50.2 39.0 | | SUBJECT CHEMISTRY COMPUTERS SYNAMICS COMPUTERS SYNAMICS CHICS CHIC | 44.5 Table 7. 2003 50 50 30 8 50 67 50 67 46 63 42 33 Table 8. 2003 50 76 37 37 54 65 42 62 47 | 2002 50 10 33 67 67 50 33 75 63 58 42 Nationa 2002 39 59 39 45 50 66 54 49 62 | 2001 20 67 60 17 33 67 25 33 50 100 67 I Grades 2001 57 63 40 27 39 74 34 36 52 | AVG 2001-2003 40.0 55.7 33.3 19.3 50.0 67.0 41.7 44.3 57.0 58.7 66.7 47.3 47.3 47.3 48.7 66.0 38.7 36.3 47.7 68.3 43.9 49.0 53.7 | 29.8
67.0
30.0
54.5
50.3
83.5
50.0
58.5
31.0
31.5
74.8
37.3
2000
43.5
46.0
37.0
34.5
39.0
79.5
45.5
45.5 | 1999
35
58
45
21
58
75
63
75
40
44
79
46
1999
40
56
45
29
41
70
58
53
54 | 1998 40 33 20 50 0 1000 25 50 33 3 Session 1998 54 65 25 41 38 88 56 43 51 | AVG
1998-2000
34.9
52.7
31.7
41.8
36.1
86.2
46.0
44.5
37.7
33.5
67.9
38.8
AVG
1998-2000
45.8
55.7
36.7
36.7
36.7
46.8
46.8
46.8
46.8
46.8
46.8
46.8
46.8 | | | Table 9. | Three Ye | ear ratio | s: Morning Ex | amination | | | | |--|--|--|--|--|--|--|--|---| | SUBJECT | 2003 | 2002 | 2001 | AVG | 2000 | 1999 | 1998 | AVG | | | | | | 2001-2003 | | | | 1998-2000 | | CHEMISTRY | 1.29 | 0.95 | 1.14 | 1.13 | 0.94 | 1.05 | 0.83 | 0.94 | | COMPUTERS | 0.87 | 0.92 | 1.35 | 1.07 | 0.80 | 1.30 | 1.00 | 1.05 | | DYNAMICS | 1.04 | 1.15 | 1.28 | 1.16 | 1.18 | 1.05 | 0.60 | 0.94 | | ELECTRICAL CIR. | 1.27 | 0.91 | 1.04 | 1.07 | 1.44 | 1.02 | 0.93 | 1.12 | | ENGINEERING ECO. | 0.55 | 1.08 | 1.23 | 0.96 | 1.49 | 1.23 | 1.31 | 1.34 | | ETHICS | 1.27 | 0.83 | 1.00 | 1.04 | 0.81 | 1.06 | 1.25 | 1.05 | | FLUID MECHANICS | 1.03 | 0.98 | 1.12 | 1.05 | 0.94 | 1.16 | 1.21 | 1.11 | | MAT SCI/ STR MAT. | 0.94 | 0.44 |
1.27 | 0.91 | 1.41 | 1.20 | 1.39 | 1.33 | | MATHEMATICS | 1.19 | 1.23 | 1.02 | 1.15 | 1.07 | 1.12 | 0.78 | 0.98 | | MECH OF MATL. | 0.98 | 1.17 | 1.17 | 1.11 | 1.33 | 0.91 | 1.36 | 1.19 | | STATICS | 1.00 | 1.17 | 1.18 | 1.12 | 1.28 | 1.20 | 1.27 | 1.24 | | THERMODYNAMICS | 1.09 | 1.01 | 0.69 | 0.92 | 1.43 | 1.11 | 0.90 | 1.13 | | | | | | | | | | | | | Table 10 |).Three \ | ear Rat | ios: Afternoor | n General Ex | am | | 1 | | SUBJECT | 2003 | 2002 | 2001 | AVG | 2000 | am
1999 | 1998 | AVG | | SUBJECT | 2003 | | | | | | 1998 | AVG
1998-2000 | | CHEMISTRY | | 2002 | 2001 | AVG
2001-2003
0.82 | | | 0.74 | 1998-2000
0.76 | | CHEMISTRY
COMPUTERS | 2003
1.00
0.66 | 2002
1.28
0.85 | 2001
0.35
1.06 | AVG
2001-2003
0.82
0.84 | 2000 | 1999
0.88
1.04 | 0.74
0.51 | 1998-2000
0.76
0.95 | | CHEMISTRY
COMPUTERS
DYNAMICS | 2003
1.00
0.66
0.81 | 2002
1.28
0.85
0.26 | 2001
0.35
1.06
1.50 | AVG
2001-2003
0.82
0.84
0.86 | 2000
0.68
1.46
0.81 | 1999
0.88
1.04
1.00 | 0.74
0.51
0.80 | 1998-2000
0.76
0.95
0.89 | | CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. | 2003
1.00
0.66
0.81
0.22 | 2002
1.28
0.85
0.26
0.73 | 2001
0.35
1.06
1.50
0.63 | AVG
2001-2003
0.82
0.84
0.86
0.53 | 2000
0.68
1.46
0.81
1.58 | 1999
0.88
1.04
1.00
0.72 | 0.74
0.51
0.80
1.22 | 1998-2000
0.76
0.95
0.89
1.20 | | CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. | 2003
1.00
0.66
0.81 | 2002
1.28
0.85
0.26
0.73
1.34 | 2001
0.35
1.06
1.50
0.63
0.85 | AVG
2001-2003
0.82
0.84
0.86 | 2000
0.68
1.46
0.81 | 1999
0.88
1.04
1.00
0.72
1.41 | 0.74
0.51
0.80 | 1998-2000
0.76
0.95
0.89
1.20
0.92 | | CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS | 2003
1.00
0.66
0.81
0.22 | 2002
1.28
0.85
0.26
0.73 | 2001
0.35
1.06
1.50
0.63
0.85
0.91 | AVG
2001-2003
0.82
0.84
0.86
0.53 | 2000
0.68
1.46
0.81
1.58 | 1999
0.88
1.04
1.00
0.72 | 0.74
0.51
0.80
1.22 | 1998-2000
0.76
0.95
0.89
1.20
0.92
1.09 | | CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS | 2003
1.00
0.66
0.81
0.22
0.93 | 2002
1.28
0.85
0.26
0.73
1.34
1.02
0.93 | 2001
0.35
1.06
1.50
0.63
0.85 | AVG
2001-2003
0.82
0.84
0.86
0.53
1.05 | 2000
0.68
1.46
0.81
1.58
1.29 | 1999
0.88
1.04
1.00
0.72
1.41
1.07
1.09 | 0.74
0.51
0.80
1.22
0.00 | 1998-2000
0.76
0.95
0.89
1.20
0.92 | | CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS | 2003
1.00
0.66
0.81
0.22
0.93
1.03 | 2002
1.28
0.85
0.26
0.73
1.34
1.02 | 2001
0.35
1.06
1.50
0.63
0.85
0.91 | AVG
2001-2003
0.82
0.84
0.86
0.53
1.05 | 2000
0.68
1.46
0.81
1.58
1.29
1.05 | 1999
0.88
1.04
1.00
0.72
1.41
1.07 | 0.74
0.51
0.80
1.22
0.00
1.14 | 1998-2000
0.76
0.95
0.89
1.20
0.92
1.09 | | CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI/STR MAT. | 2003
1.00
0.66
0.81
0.22
0.93
1.03
1.19 | 2002
1.28
0.85
0.26
0.73
1.34
1.02
0.93 | 2001
0.35
1.06
1.50
0.63
0.85
0.91
0.74 | AVG
2001-2003
0.82
0.84
0.86
0.53
1.05
0.98 | 2000
0.68
1.46
0.81
1.58
1.29
1.05
1.41 | 1999
0.88
1.04
1.00
0.72
1.41
1.07
1.09 | 0.74
0.51
0.80
1.22
0.00
1.14
0.45 | 1998-2000
0.76
0.95
0.89
1.20
0.92
1.09
0.92 | | CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI/STR MAT. MATHEMATICS | 2003
1.00
0.66
0.81
0.22
0.93
1.03
1.19
1.08 | 2002
1.28
0.85
0.26
0.73
1.34
1.02
0.93
0.67 | 2001
0.35
1.06
1.50
0.63
0.85
0.91
0.74 | AVG
2001-2003
0.82
0.84
0.86
0.53
1.05
0.98
0.96 | 2000
0.68
1.46
0.81
1.58
1.29
1.05
1.41
1.29 | 1999
0.88
1.04
1.00
0.72
1.41
1.07
1.09 | 0.74
0.51
0.80
1.22
0.00
1.14
0.45 | 1998-2000
0.76
0.95
0.89
1.20
0.92
1.09
0.92
0.94 | | SUBJECT CHEMISTRY COMPUTERS DYNAMICS ELECTRICAL CIR. ENGINEERING ECO. ETHICS FLUID MECHANICS MAT SCI/STR MAT. MATHEMATICS MECH OF MATL. STATICS | 2003
1.00
0.66
0.81
0.22
0.93
1.03
1.19
1.08
0.98 | 1.28
0.85
0.26
0.73
1.34
1.02
0.93
0.67
1.21 | 2001
0.35
1.06
1.50
0.63
0.85
0.91
0.74
0.92
0.96 | AVG
2001-2003
0.82
0.84
0.86
0.53
1.05
0.98
0.96
0.90 | 2000
0.68
1.46
0.81
1.58
1.29
1.05
1.41
1.29
0.68 | 1999
0.88
1.04
1.00
0.72
1.41
1.07
1.09
1.42
0.74 | 0.74
0.51
0.80
1.22
0.00
1.14
0.45
0.00
0.82 | 1998-2000
0.76
0.95
0.89
1.20
0.92
1.09
0.92
0.94
0.75 | | Т | able 11. Six Year Ratios | | |-------------------|--------------------------|-----------| | SUBJECT | MORNING | AFTERNOON | | CHEMISTRY | 1.04 | 0.79 | | COMPUTERS | 1.06 | 0.89 | | DYNAMICS | 1.05 | 0.87 | | ELECTRICAL CIR. | 1.09 | 0.86 | | ENGINEERING ECO. | 1.14 | 0.99 | | ETHICS | 1.04 | 1.04 | | FLUID MECHANICS | 1.08 | 0.94 | | MAT SCI/ STR MAT. | 1.12 | 0.92 | | MATHEMATICS | 1.07 | 0.91 | | MECH OF MATL. | 1.15 | 1.14 | | STATICS | 1.18 | 1.23 | | THERMODYNAMICS | 1.02 | 1.11 |